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Kirchhoff plate theory and FE

Rigid pavement can be idealized using Kirchhoff theory, which iscgipé to thin plates (Cook
et al, 1989; Reddy, 1993). In other words, since rigid pavement thiclessyilesser than
other two dimensions, transverse shear deformation is insignifindntam be neglected. With
this important statement, all stress-strain relations thatvuaddransverse shear deformation are
vanished and what remains is the plane stress-strain relatiors telabwn below in form of
matrices (for an isotropic material).
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When a = coefficient of thermal expansion of concrete
[ = Poisson’s ratio of concrete
T = temperature differential between top and bottom of concrete
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Based on stress-strain relations as written in matrix fvove, stiffness matrix of concrete slab
[Ko] may be derived using the following formula.
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When [B] = strain-displacement matrix (will desscussed later)
A = area boundary of an element
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When t = slab thickness

A-1



Winkler foundation and FE

Theoretically, rigid pavement, which is actually skab on grade, can be approximately
considered as one elastic structure supportedfbyralation model called Winkler foundation.
There are a great many other foundation modelsladlai for rigid pavement foundation
idealization; however, Winkler foundation is traglitally used and considered as the most
effective model. Details of characteristics, adages, and disadvantages of Winkler foundation
will not be discussed at this time. Another nanmieAbnkler foundation is “Dense Liquid”
foundation because this foundation simulates tHeawer of subgrade or original soil under
concrete slab by providing a vertical resistanspoee equal tBw when w is vertical deflection
and 3 is the Winkler foundation modulus (modulus of swdulg reaction). Stiffness matrix of
foundation is written below in matrix form.
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When [N]  =interpolation functions matrix (WMde discussed later)
A = area boundary of an element

Discretization into FE and inter polation functions

Since rigid pavement has rectangular geometry, ghgement can be discretized using
rectangular linear FE with three degrees of freedb®ach node: one vertical displacement, and
two horizontal rotations as shown in FigureA-8.other words, one FE contains twelve degrees
of freedom and this means each element has 12¥frifess matrix and 12x1 force vector and
12x1 displacement vector.
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Figure A-8: Twelve-d.o.f. rectangular Kirchhoff plate element with typical d.o.f. shown at node 3

Since Kirchhoff plate elements provide interelemeantinuity of vertical displacements and
rotations in x and y directions, the elements can donsidered € elements; therefore,
interpolation functions for Celements like Lagrange’s interpolation formula may be applied.
Hermitian interpolation function, one of interpatat functions € elements, can be used for this



situation (thin plate elements). For an elemeat thas four nodes: 1, 2, 3, and 4, Hermitian
interpolation functions can be derived using folilegvformulae.
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N, N, N,|= 1—16 DX, XLY, - XY, +2X,Y, +2YY, 2bYY, 2aX,X,] (A-20-2)
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When X, =1-2 (A-21-1)
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Now the interpolation functions can be written iatnx form 1x12 as shown below.
[N]=[N; N, Nyl N, N,, Ny2 N; Ny, Ny3 N, N,, Ny4] (A-22)

Strain-displacement matrix [B] can also be writieimatrix form 3x12 as shown below.
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FE of one e ement

From previous part, stiffness matrix of each elei&n] (12x12) can be derived as shown
below.

[K,]Qu, f+[K 15u f={r} (A-24-1)
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but  {u,j={u,j={u.} (A-24-2)
[KJHu} ={r.} (A-24-3)
[Ko]=[K,]+[K,] (A-24-4)

When {y} = slab displacement vector
{us}  =foundation displacement vector
{u¢ = element displacement vector (12x1)
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{re} = element force vector (12x1)

{r} =] [BI" D1 0x,} dA (A-26)
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Global system

Global stiffness matrix and force matrix can be pated based on element stiffness matrix and
element force matrix. The concept of generatingneld stiffness matrix and element force
vector into global stiffness matrix and global #®neector is exactly the same as the concept of
using Boolean matrix that is applicable fdt €lements but the method is slightly different. sThi
is because each node of a Kirchhoff element ha=sgBeés of freedom. This means the element
stiffness matrix, which is actually 12x12, can besidered as 4x4 and the element force vector,
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which is actually 12x1, can be considered 4x1 ireptd generate them into global system as
shown below.

K11(3x3) K12(3x3) K13(3x3) Kl4(3x3)
[K ] _ K21(3x3) K22(3x3) K23(3x3) K24(3x3) ( A 28)
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K31(3x3) K32(3x3) K 33(3x3) K34(3x3)
K 41(3x3) K 42(3x3) K 43(3x3) K 44(3x3)
r.1(3xl)
r.2 3x1
{r}=q7%9 (A-29)
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Once global stiffness matrix and global force veete derived, displacement vector of global
system can be computed.

U} ana = [KGhean HF}ana (A-30)

When {U} = global displacement vector
[KG] = global stiffness matrix
{F} = global force vector
N = number of nodes in global system





